Bayesian learning for a class of priors with prescribed marginals
نویسندگان
چکیده
We present Bayesian updating of an imprecise probability measure, represented by a class of precise multidimensional probability measures. Choice and analysis of our class are motivated by expert interviews that we conducted with modelers in the context of climatic change. From the interviews we deduce that generically, experts hold a much more informed opinion on the marginals of uncertain parameters rather than on their correlations. Accordingly, we specify the class by prescribing precise measures for the marginals while letting the correlation structure subject to complete ignorance. For sake of transparency, our discussion focuses on the tutorial example of a linear two-dimensional Gaussian model. We operationalize Bayesian learning for that class by various updating rules, starting with (a modified version of) the generalized Bayes’ rule and the maximum likelihood update rule (after Gilboa and Schmeidler). Over a large range of potential observations, the generalized Bayes’ rule would provide non-informative results. We restrict this counter-intuitive and unnecessary growth of uncertainty by two means, the discussion of which refers to any kind of imprecise model, not only to our class. First, we find our class of priors too inclusive and, hence, require certain additional properties of prior measures in terms of smoothness of probability density functions. Second, we argue that both updating rules are dissatisfying, the generalized Bayes’ rule being too conservative, i.e., too inclusive, the maximum likelihood rule being too exclusive. Instead, we introduce two new ways of Bayesian updating of imprecise probabilities: a “weighted maximum likelihood method” and a “semi-classical method.” The former bases Bayesian updating on the whole set of priors, however, with weighted influence of its members. By referring to the whole set, the weighted maximum likelihood method allows for more robust inferences than the standard maximum likelihood method and, hence, is better to justify than the latter. Furthermore, the semi-classical method is more objective than the weighted maximum likelihood method as it does not require the subjective definition of a weighting function. Both new methods reveal much more informative results than the generalized Bayes’ rule, what we demonstrate for the example of a stylized insurance model. ∗Potsdam Institute for Climate Impact Research, PO Box 60 12 03, D-14412 Potsdam, Germany, [email protected] †Potsdam Institute for Climate Impact Research, PO Box 60 12 03, D-14412 Potsdam, Germany, and Carnegie Mellon University, Pittsburgh, USA, [email protected] ‡Department of Statistics, University of Munich, Ludwigstr 33, D-80539 Munich, Germany, [email protected]
منابع مشابه
Determination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملClasses of bidimensional priors specified on a collection of sets : Bayesian robustness
When the parameter space is multidimensional, to elicit the joint prior distribution is a very difficult task. An accessible prior information might then be the class of prior distributions with given one-dimensional marginals. Unfortunately, even in bidimensional parameter spaces, the variational problems encountered in the Bayesian analysis of this class have not yet been solved. This paper i...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملOn the half-Cauchy prior for a global scale parameter
This paper argues that the half-Cauchy distribution should replace the inverseGamma distribution as a default prior for a top-level scale parameter in Bayesian hierarchical models, at least for cases where a proper prior is necessary. Our arguments involve a blend of Bayesian and frequentist reasoning, and are intended to complement the original case made by Gelman (2006) in support of the fold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 49 شماره
صفحات -
تاریخ انتشار 2008